skip to main content


Search for: All records

Creators/Authors contains: "Ducklow, Hugh W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 15, 2024
  2. The Antarctic marine environment is a dynamic ecosystem where microorganisms play an important role in key biogeochemical cycles. Despite the role that microbes play in this ecosystem, little is known about the genetic and metabolic diversity of Antarctic marine microbes. In this study we leveraged DNA samples collected by the Palmer Long Term Ecological Research (LTER) project to sequence shotgun metagenomes of 48 key samples collected across the marine ecosystem of the western Antarctic Peninsula (wAP). We developed an in silico metagenomics pipeline (iMAGine) for processing metagenomic data and constructing metagenome-assembled genomes (MAGs), identifying a diverse genomic repertoire related to the carbon, sulfur, and nitrogen cycles. A novel analytical approach based on gene coverage was used to understand the differences in microbial community functions across depth and region. Our results showed that microbial community functions were partitioned based on depth. Bacterial members harbored diverse genes for carbohydrate transformation, indicating the availability of processes to convert complex carbons into simpler bioavailable forms. We generated 137 dereplicated MAGs giving us a new perspective on the role of prokaryotes in the coastal wAP. In particular, the presence of mixotrophic prokaryotes capable of autotrophic and heterotrophic lifestyles indicated a metabolically flexible community, which we hypothesize enables survival under rapidly changing conditions. Overall, the study identified key microbial community functions and created a valuable sequence library collection for future Antarctic genomics research. 
    more » « less
    Free, publicly-accessible full text available May 18, 2024
  3. Abstract. Heterotrophic marine bacteria utilize organic carbon for growth and biomass synthesis. Thus, their physiological variability is key to the balancebetween the production and consumption of organic matter and ultimately particle export in the ocean. Here we investigate a potential link betweenbacterial traits and ecosystem functions in the rapidly warming West Antarctic Peninsula (WAP) region based on a bacteria-oriented ecosystemmodel. Using a data assimilation scheme, we utilize the observations of bacterial groups with different physiological traits to constrain thegroup-specific bacterial ecosystem functions in the model. We then examine the association of the modeled bacterial and other key ecosystemfunctions with eight recurrent modes representative of different bacterial taxonomic traits. Both taxonomic and physiological traits reflect thevariability in bacterial carbon demand, net primary production, and particle sinking flux. Numerical experiments under perturbed climate conditionsdemonstrate a potential shift from low nucleic acid bacteria to high nucleic acid bacteria-dominated communities in the coastal WAP. Our studysuggests that bacterial diversity via different taxonomic and physiological traits can guide the modeling of the polar marine ecosystem functionsunder climate change. 
    more » « less
  4. Abstract. The West Antarctic Peninsula (WAP) is a rapidly warming region, withsubstantial ecological and biogeochemical responses to the observed changeand variability for the past decades, revealed by multi-decadal observationsfrom the Palmer Antarctica Long-Term Ecological Research (LTER) program. Thewealth of these long-term observations provides an important resource forecosystem modeling, but there has been a lack of focus on the developmentof numerical models that simulate time-evolving plankton dynamics over theaustral growth season along the coastal WAP. Here, we introduce aone-dimensional variational data assimilation planktonic ecosystem model (i.e., theWAP-1D-VAR v1.0 model) equipped with a modelparameter optimization scheme. We first demonstrate the modified and newlyadded model schemes to the pre-existing food web and biogeochemicalcomponents of the other ecosystem models that WAP-1D-VAR model was adaptedfrom, including diagnostic sea-ice forcing and trophic interactions specificto the WAP region. We then present the results from model experiments wherewe assimilate 11 different data types from an example Palmer LTER growthseason (October 2002–March 2003) directly related to corresponding modelstate variables and flows between these variables. The iterative dataassimilation procedure reduces the misfits between observationsand model results by 58 %, compared to before optimization, via an optimized set of12 parameters out of a total of 72 free parameters. The optimized model resultscapture key WAP ecological features, such as blooms during seasonal sea-iceretreat, the lack of macronutrient limitation, and modeled variables andflows comparable to other studies in the WAP region, as well as severalimportant ecosystem metrics. One exception is that the model slightlyunderestimates particle export flux, for which we discuss potentialunderlying reasons. The data assimilation scheme of the WAP-1D-VAR modelenables the available observational data to constrain previously poorlyunderstood processes, including the partitioning of primary production bydifferent phytoplankton groups, the optimal chlorophyll-to-carbon ratio ofthe WAP phytoplankton community, and the partitioning of dissolved organiccarbon pools with different lability. The WAP-1D-VAR model can besuccessfully employed to link the snapshots collected by the available datasets together to explain and understand the observed dynamics along thecoastal WAP. 
    more » « less
  5. null (Ed.)
  6. Abstract

    The western Antarctic Peninsula is an extreme low temperature environment that is warming rapidly due to global change. Little is known, however, on the temperature sensitivity of growth of microbial communities in Antarctic soils and in the surrounding oceanic waters. This is the first study that directly compares temperature adaptation of adjacent marine and terrestrial bacteria in a polar environment. The bacterial communities in the ocean were adapted to lower temperatures than those from nearby soil, with cardinal temperatures for growth in the ocean being the lowest so far reported for microbial communities. This was reflected in lower minimum (Tmin) and optimum temperatures (Topt) for growth in water (−17 and +20°C, respectively) than in soil (−11 and +27°C), with lower sensitivity to changes in temperature (Q10; 0–10°C interval) in Antarctic water (2.7) than in soil (3.9). This is likely due to the more stable low temperature conditions of Antarctic waters than soils, and the fact that maximum in situ temperatures in water are lower than in soils, at least in summer. Importantly, the thermally stable environment of Antarctic marine water makes it feasible to create a single temperature response curve for bacterial communities. This would thus allow for calculations of temperature‐corrected growth rates, and thereby quantifying the influence of factors other than temperature on observed growth rates, as well as predicting the effects of future temperature increases on Antarctic marine bacteria.

     
    more » « less
  7. Abstract

    The western Antarctic Peninsula (WAP) is a bellwether of global climate change and natural laboratory for identifying interactions between climate and ecosystems. The Palmer Long‐Term Ecological Research (LTER) project has collected data on key ecological and environmental processes along theWAPsince 1993. To better understand how key ecological parameters are changing across space and time, we developed a novel seascape classification approach based on in situ temperature, salinity, chlorophylla, nitrate + nitrite, phosphate, and silicate. We anticipate that this approach will be broadly applicable to other geographical areas. Through the application of self‐organizing maps (SOMs), we identified eight recurrent seascape units (SUs) in these data. These SUs have strong fidelity to known regional water masses but with an additional layer of biogeochemical detail, allowing us to identify multiple distinct nutrient profiles in several water masses. To identify the temporal and spatial distribution of these SUs, we mapped them across the PalmerLTERsampling grid via objective mapping of the original parameters. Analysis of the abundance and distribution of SUs since 1993 suggests two year types characterized by the partitioning of chlorophyllainto SUs with different spatial characteristics. By developing generalized linear models for correlated, time‐lagged external drivers, we conclude that early spring sea ice conditions exert a strong influence on the distribution of chlorophyllaand nutrients along theWAP, but not necessarily the total chlorophyllainventory. Because the distribution and density of phytoplankton biomass can have an impact on biomass transfer to the upper trophic levels, these results highlight anticipated links between theWAPmarine ecosystem and climate.

     
    more » « less